
“In the beginning of the year 1665 I found the method of approximating series and the rule
for reducing any dignity of any binomial to such a series. The same year in May I found
the method of tangents of Gregory and Slusius, and in November had the direct method of
Fluxions, and the next year in January had the Theory of Colours, and in May following
I had entrance into the inverse method of Fluxions, and in the same year I began to think
of gravity extending to the orb of the moon. . .and having thereby compared the force
requisite to keep the Moon in her orb with the force of gravity at the surface of the earth,
and found them to answer pretty nearly. All this was in the two years of 1665 and 1666,
for in those years I was in the prime of my age for invention and minded Mathematicks
and Philosophy more than at any time since.”

Sir Isaac Newton (1642 – 1727) 8
Gravitation and Central Forces

While Newtonian mechanics can in theory describe motion under any force, an analytic solution
to a problem is often difficult to come by. Until now, we have generally focused on constant
forces such as gravity near Earth’s surface, which are trivial to integrate. In this chapter, we
will explore a more general class of forces called central forces. The most important central force
is the gravitational force between astronomical bodies, which was proposed by Isaac Newton as
a model of planetary motion. Additionally, we will show that a gravitational force between
two bodies leads to orbits that are described by Kepler’s laws. We will then discuss how
bodies interacting under a central force can scatter at various angles, just like the collisions
we investigated in Chapter 5. Finally, we will discuss how the two body central force problem
can be reduced to an effective one body problem.
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8.1 Properties of Central Forces

Gravitation is a common example of a special class of forces known as central forces. A central
force points radially inward or outward from some source point, and is only dependent on the
distance from that source. We can represent a central force as F = F (r)r̂, where r̂ is the radial
unit vector in polar coordinates.

One important property of central forces is that they conserve angular momentum about the
source point. We can see this by calculating the torque due to a central force, which is given by
τ = rr̂ × F (r)r̂ = 0.

Another feature of central forces is that they are conservative. We can prove this by showing
that the curl is zero. An arbitrary central force can be written as

F = F (r)r̂.

Using the expression for the curl in spherical coordinates given in Table A.1, we have

∇× F =
1

r sin θ

∂F

∂φ
θ̂ − 1

r

∂F

∂θ
φ̂ = 0.

Therefore, we can write every central force as F = −∇U for some potential energy U .

8.2 Gravity as a Central Force

So far, we have modeled gravity as a constant force pointing towards the earth’s surface. How-
ever, in reality, gravitation is more complicated – a force of gravitation exists between any two
bodies and always attracts them. Newton determined that gravitation is a central force given
by

F1,2 = −GM1M2

r2
1,2

r̂,

where M1 and M2 are the masses of the two bodies and r1,2 is the distance between them, as
indicated in Figure 8.1. The constant G has been experimentally determined to have a value of
6.67× 10−11 Nm2kg−2.

M1 M2

r1,2

F1,2 F2,1

Figure 8.1: Gravity is an attractive force between two masses that is inversely proportional
to the square of their separation.
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A

B

Figure 8.2: The equipotentials of the field of a central force are concentric spheres.

The negative sign in the force law is due to the direction of the r̂ vector, which points from the
body causing the gravity towards the body experiencing it. Moreover, we note that this force
law is consistent with Newton’s third law: F2,1 = −F1,2.

Since gravitation is a central force, we can find an associated potential energy function. Phys-
ically, we define this potential function as the work done by the gravitational force when an
object is brought from an infinite distance to a distance r from the gravitational source. As
depicted in Figure 8.2, regardless of what path we choose, we get the same value for the poten-
tial. In this case, values of constant potential lie on spheres centered around the source. We call
these equipotential surfaces. It is easy to see that equipotential surfaces for any central force are
concentric spheres.

The value of the potential at a distance r from the source is given by

U = −
ˆ

C

F (r) · ds = −
ˆ

C

F (r)r̂ ·
(
drr̂ + r dφφ̂+ r sinφdθθ̂

)
.

The spherical unit vectors are orthogonal, so we can immediately evaluate the dot product and
obtain

U = −
ˆ r

∞
F (r) dr.

Substituting the inverse square central force law for gravitation, we find

U = −
ˆ r

∞
−GM1M2

r2
dr = −GM1M2

r
.

Regardless of the value of r, the potential energy function for gravity is negative. This leads
us to an important concept. If an object is subject to a planet’s gravitational pull, then it
takes work to free the object from the planet. In terms of energy conservation, we can think
of this as the inability to reach a net positive energy due to the large negative potential energy
of gravitational attraction. Thus, there is a minimum velocity, known as the escape velocity, at
which an object will be able to escape the influence of gravity and move away indefinitely. To
determine the escape velocity, we can employ the conservation of energy by equating the sum
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of the total kinetic and potential energies at two different radial displacements. We will use m
as the mass of the small body, and M as the mass of the stationary larger body. This gives

1

2
mv2 − GmM

r
=

1

2
mv2

f −
GmM

rf
.

If the object is to reach an infinite distance, then it must have at least as much energy as there
is potential energy at infinity. Since we have used infinity as the reference point, the potential
energy there is zero, so

1

2
mv2 − GmM

r
≥ 0.

This gives v ≥
√

2GM
r . We call ve =

√
2GM
r the escape velocity. Any faster launch speed will

also allow the object to escape a body of mass M , but with nonzero kinetic energy at infinity.
Physically, this means that the object’s velocity will approach a nonzero value.

Example 8.1. Calculate the energy and period of a satellite of mass m which is in a circular
orbit around a planet of mass M , as in Figure 8.3.

F

R

Figure 8.3: A satellite is in a circular orbit of radius R around a planet.

Solution: In order for the object to remain in a circular orbit, the gravity must account for
the centripetal acceleration. So,

GMm

R2
=
mv2

R
.

Therefore, the kinetic energy of the body is

1

2
mv2 =

GMm

2R
.

Since the gravitational potential energy is given by −GMm
R , the total energy is −GMm

2R .

To calculate the period, we can substitute v = 2πR
T . This gives

GMm

R2
=
m

R

(
2πR

T

)2

,

so

T 2 =
4π2R3

GM
.
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Example 8.2. A small body with mass m circularly orbits a massive planet with mass M
and radius R. The body loses energy at a rate

P = −k (Mm)2(M +m)

r5
.

Assuming the mass starts at a radius r0 and the orbit remains nearly circular, determine the
time t∗ it takes for the body to collide with a planet.

Solution: Using the expression we have derived for the energy of a body in a circular orbit,

dE

dt
= −GMm

2

d

dt

1

r
= −k (Mm)2(M +m)

r5
.

This simplifies to the differential equation

r3 dr

dt
= −2Mm(M +m)k

G
.

Separating and integrating, we find

1

4

(
R4 − r4

0

)
= −2Mm(M +m)kt∗

G
,

so

t∗ =
G

8Mm(M +m)k

(
r4
0 −R4

)
.

Einstein’s theory of general relativity predicts an energy loss at this rate; but, except in
extreme cases, k is so small that the effect is undetectable.

8.3 Gravity of Large Bodies

Our expression for gravitational force, F = −GMm
r2 r̂, does not take the spatial extent of a body

into account. When considering the attraction of an object to Earth, we might expect that the
mass directly underneath the object matters a great deal, while the mass on the other side of
Earth does not attract it much at all. However, for a spherically symmetric body, there is an
important result that allows us to ignore the extent of the attracting body and treat it as a
point mass. We will derive this result, and then show how to account for slight deviations from
spherical symmetry.

The Shell Theorem

In order to find the gravitational force of a spherical body on a point mass m, we can simply
integrate the field due to each differential mass of the spherical body, as shown in Figure 8.4.
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r′
r

r′ − r

Figure 8.4: The gravitational field of a spherical body is the integral of the fields due to
each differential mass element.

This gives

F (r) = −
ˆ

Gmρ(r′) (r − r′)
|r − r′|3

dr′,

where ρ is the mass density. This is a very cumbersome integral. While we certainly could define
a spherical coordinate system and evaluate it using the law of cosines, it is much easier to use
some of the results of vector calculus (covered in Appendix A.4).

We will start by defining the gravitational field of a particle. If the gravitational field of a
particle is g(r), then the force it exerts on a mass m at a location r is

F = mg(r).

From this, it is easy to see that the field for an object of mass M is given by

g(r) = −GM r̂
r2

.

We will now use the divergence theorem to determine the value of this field. The divergence of
g(r) can be computed using the expression in Table A.1:

∇ · g =
1

r2

∂(r2gr)

∂r
=

1

r2

∂

∂r
(−GM) = 0.

However, this analysis does not hold at the origin, where there is a singularity in the field.
Clearly, we should expect a negative divergence at the origin, since all the field lines point
inwards. We can determine a volume integral of this divergence using the divergence theorem,
which states that for an arbitrary vector field F ,

˚

∇ · F dV =

‹

F · dS.

Choosing our surface to be a sphere centered at the origin, the surface integral becomes trivial
since g · dS is constant:

˚

∇ · g dV =
(
4πr2

)(
−GM

r2

)
= −4πGM.
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We can now use this result (sometimes known as Gauss’s Law for gravitation) to analyze a
continuous mass distribution. In this case, a point has a mass dM , so we can write

˚

∇ · g dV = −4πGdM.

This result holds no matter how small the sphere around the mass is. Thus, we can contract the
sphere to a differential volume dV , and we are left with a result known as Poisson’s equation,

∇ · g(r) = −4πG
dM

dV
= −4πGρ(r).

Now, consider an object with density given by ρ(r) = f(r); that is, the object is spherically
symmetric, so the density depends only upon the radius. We can then apply the divergence
theorem again, this time to determine the surface integral of the gravitational field. We will
start by taking a spherical surface with radius greater than the radius of the body. Then, we
have

‹

g · dS =

˚

∇ · g dV = −4πG

˚

ρ dV = −4πGM.

A very similar process with a sphere of radius less than that of the body gives

‹

g · dS = −4πGMenc,

where Menc is the total mass of the portion of the object contained within this sphere. Since
the object is spherically symmetric, the gravitational field will depend only on r. Additionally,
we know that it will be directed inwards. So, g · dS = −g dA, and we have

−4πr2g = −4πGMenc.

Therefore, the magnitude of g must be

g(r) =
GMenc

r2
.

This is also true when r exceeds the radius of the body, as long as we understand Menc to be
the total mass M . Since we know the direction of g, we can finally write

g(r) = −GMencr̂

r2
.

This is called the shell theorem. For a spherically symmetric object, the gravitational field at a
radius r is the same as the field due to a point mass at the center of the object, with its mass
equal to the total mass enclosed within a spherical shell of radius r. This allows us to easily
analyze gravitational fields of astronomical bodies, which are most often spherically symmetric.

Example 8.3. A hole of negligible radius is drilled through the center of Earth. If an object
of mass m is dropped down one side of the hole, determine how long it takes for it to reach
the other end. Assume that there is no friction, and that Earth has radius R, mass M , and
a uniform density.
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Solution: The shell theorem will immediately give us the gravitational field at any position
in the hole. The total mass enclosed at radius r is

Menc =
( r
R

)3

M,

so we have

g = −GM
R3

r.

Therefore, the force on the mass is

F = −GMm

R3
r.

This has the same form as a spring force, with k = GMm
R3 . We thus expect simple harmonic

oscillation with a period T = 2π
√

m
k . The time it takes for the object to reach the other side

is a half period, or

T = π

√
R3

GM
= 42 min.

This phenomenon, called a “gravity train,” was first proposed by Robert Hooke in the 17th

century. Since then, the idea has been rejected because of the immense engineering challenges
involved and the friction inside the earth.

Quadrupole Moment Correction

All astronomical bodies of considerable size are approximately spherical. However, for some
precise calculations, the deviations from a perfect sphere are important.

r′
r

r − r′

γ

Figure 8.5: The gravitational field of a non-spherical body can be found by integrating.

In the non-spherical case, it is generally easier to determine the gravitational potential per mass,
which we denote u(r), than the gravitational field. Referring to Figure 8.5, the required integral
to calculate the gravitational potential is

u(r) = −
ˆ

Gρ(r′)
|r − r′| dV

′ = −G
ˆ

ρ(r′)√
r2 − 2rr′ cos γ + r′2

dV ′,
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where γ is the angle between r and r′. Defining x = r′

r , this becomes

u(r) = −G
r

ˆ

ρ(r′)√
1− 2x cos γ + x2

dV ′.

We can expand the integrand as a power series in x. If x < 1, which corresponds to determining
the potential outside the body, then we can use the binomial expansion

(1 + (x2 − 2x cos γ))−
1
2 = 1− 1

2

(
x2 − 2x cos γ

)
+

3

8

(
x2 − 2x cos γ

)2 − . . . .

Collecting powers of x, this becomesi

(1 + (x2 − 2x cos γ))−
1
2 = 1 + (cos γ)x+

1

2

(
3 cos2 γ − 1

)
x2 + . . . .

Now, substituting into the integral, we have

u(r) = − GM

r
− G

r2

ˆ

ρ(r′)r′ cos γ dV ′

− G

2r3

ˆ

ρ(r′)r′2
(
3 cos2 γ − 1

)
dr′ + . . . .

The second term can be made to vanish by choosing the center of mass of the body as the
origin. All the other terms contribute corrections to the zero-order approximation −GMr . In
this section, we will only concern ourselves with the second-order correction:

∆u = − G

2r3

ˆ

ρ(r′)r′2
(
3 cos2 γ − 1

)
dV ′.

This is called the gravitational quadrupole term.

The quadrupole term is usually written in terms of a quadrupole moment matrix, which has
components

Qij =

ˆ

ρ(r)
(
3rirj − r2δij

)
dV,

where δij is the Kronecker delta symbol,

δij =

{
1 if i = j,

0 if i 6= j
.

You will verify in Problem 13 that the quadrupole term is equal to

− G

2r3

3∑

i=1

3∑

j=1

Qijninj ,

where ni = ri
r .

iThe complete expansion is
∑∞
`=0 P`(cos γ)x`, where P` is a Legendre polynomial of degree ` (see Appendix

C, page 532).
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Example 8.4. The most prominent deviation from a sphere for most planets is the equatorial
bulge. This occurs when the rotation of a planet leads to the equatorial radius being larger
than the polar radius. Consider a planet of uniform density with mass M , equatorial radius
Re, and polar radius Rp. Determine the quadrupole correction to the gravitational potential.

Solution: To compute the quadrupole term, we need to find each component of the
quadrupole matrix. Integrating over an ellipsoid is difficult, so we will start by mapping
the planet to a unit sphere through the coordinate transformations

x′ =
x

Re
, y′ =

y

Re
, z′ =

z

Rp
.

Then, for example, we have

Q11 =

ˆ

ρ(r)
(
3x2 − r2

)
dV

=
3M

4π

ˆ 2π

0

ˆ π

0

ˆ 1

0

(
R2
e sin2 θ(2 cos2 φ− sin2 φ)

−R2
p cos2 θ

)
r4 sin θ dr dθ dφ.

Integrating, we have

Q11 =
3M

20π

ˆ 2π

0

ˆ π

0

(
R2
e sin3 θ(2 cos2 φ− sin2 φ)

−R2
p cos2 θ sin θ

)
dθ dφ

=
3M

20π

ˆ 2π

0

(
4

3
R2
e(2 cos2 φ− sin2 φ)− 2

3
R2
p

)
dφ

=
M

5

(
R2
e −R2

p

)
.

Similarly, you can show that the other diagonal elements are

Q22 =
M

5

(
R2
e −R2

p

)
,

Q33 =
2M

5

(
R2
p −R2

e

)
.

It is simple to show that, due to the symmetry of the body, the off-diagonal elements all
vanish. So, the quadrupole correction is

G

2r5

M

5

(
R2
p −R2

e

) (
x2 + y2 − 2z2

)
.

Example 8.5. A hoop in the xy plane with mass M has a radius a. A smaller mass m
circularly orbits the hoop a distance R� a away.

(a) Determine the orbital frequency of the mass to order
(
a
R

)2
if the orbital plane of the
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mass coincides with the plane of the hoop.

(b) Assume the hoop is spun with a very large angular velocity about the x axis. Determine

the orbital frequency of the mass to order
(
a
R

)2
if the mass orbits in the yz plane.

Solution: First, we will compute the quadrupole correction to the field of the hoop. We
call the plane of the hoop z = 0, so the matrix elements involving z are zero. Then, the Q11

element is

Q11 =

ˆ

ρ(r)
(
3x2 − r2

)
dV

=
M

2πa

ˆ 2π

0

a3(3 cos2 θ − 1) dθ

=
Ma2

2
.

Similarly, Q22 = Ma2

2 . It is easy to show that the off-diagonal elements are zero, so the
potential per mass is

u = −GM
r
− G

2r3

3∑

i=1

3∑

j=1

Qijninj = −GM
r
− GMa2

4r5
(x2 + y2).

In the plane of the hoop, we have z = 0 and r2 = x2 + y2, so

F = −m∂u

∂r
= −GMm

r2
− 3GMma2

4r4
.

Setting this equal to the centripetal acceleration, we have

mΩ2R =
GMm

R2
+

3GMma2

4R4
,

or

Ω ≈ Ω0

(
1 +

3a2

8R2

)
.

When the hoop is rapidly spinning, the potential energy per mass at any given time is the
same as before, except with x2 + y2 replaced with the distance to the center of the hoop
in the plane of the hoop. When the hoop is rotated by an angle θ, its plane is normal to
n̂ = sin θ̂+ cos θk̂, so

u = −GM
r
− GMa2

4r5

(
r2 − (r · n̂)2

)

= −GM
r
− GMa2

4r5

(
x2 + y2 cos2 θ + z2 sin2 θ − 2yz sin θ cos θ

)
.

The angle θ oscillates with a frequency ω � Ω, so the mass is influenced by the average value
of u rather than its instantaneous value. Using 〈sin2 θ〉 = 〈cos2 θ〉 = 1

2 and 〈sin θ cos θ〉 = 0,
we have

〈u〉 = −GM
r
− GMa2

4r5

(
x2 +

y2 + z2

2

)
.
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Since the mass orbits in the yz plane, this simplifies to

〈u〉 = −GM
r
− GMa2

8r3
.

Note that spinning the hoop was necessary to make the potential rotationally symmetric in
the yz plane, allowing the mass to maintain a circular orbit. Solving for Ω in the same way
as before, we find

Ω ≈ Ω0

(
1 +

3a2

16R2

)
.

Example 8.6. A satellite circularly orbits Earth at an angular velocity Ω2 = GM
r3 . The

satellite can be modeled as a thin cylinder with a radius a and a length 2L� a. The length
of the satellite is much smaller than the distance from the satellite to Earth.

(a) Determine the equilibrium position of the satellite in a frame rotating with the satellite.

(b) Determine the frequency of small oscillations if the satellite is perturbed in the plane
of its orbit.

(c) Determine the frequency of small oscillations if the satellite is perturbed perpendicular
to the plane of its orbit.

(d) Determine the equilibrium position of the satellite if the satellite is spun about its long
axis with a small angular velocity ω.

Solution: To make this problem simpler, we will briefly explain a method which we develop
much more fully in Chapter 12. We know that an object orbiting with frequency Ω in a circle
of radius r experiences a centripetal acceleration −ω2r. If we work in the frame of the orbiting
object, the relative acceleration vanishes because the particle is at rest. Mathematically, this
occurs because the frame also has an acceleration −ω2r, so the difference of the accelerations
is zero. From this we derive an important relationship: starting from Newton’s second law
in the rest frame, F = ma, we can substitute a = −ω2r + ar, where ar is the relative
acceleration. Rearranging, we have F +mω2r = mar. This means that if we work in the rest
frame, we must add an outward centrifugal force mω2r, or equivalently a potential energy
− 1

2mω
2r2.

By symmetry, the only possible possible equilibrium positions of the satellite are the hori-
zontal or vertical positions. In the rotating frame, the gravitational attraction as well as the
repulsion due to the centripetal force cause a net torque. Because gravitational attraction
increases and centripetal repulsion decreases closer to the earth, perturbations from the ver-
tical position would experience a restoring torque, while perturbations from the horizontal
configuration would experience a net destabilizing torque. Therefore, the vertical position is
the equilibrium position.

When perturbed slightly from the vertical position in the direction of the orbital plane, as
shown in Figure 8.6, the gravitational potential of the satellite is

Ug = −GM
ˆ L

−L

λ ds√
r2 + s2 + 2rs cos θ

,

8.3 Gravity of Large Bodies 191

θ

s

Figure 8.6: The satellite is perturbed by an angle θ from its vertical equilibrium.

where λ = m
2L is the linear density of the satellite, θ is the angular deviation from the vertical

position, and s is the distance to the center of mass of the satellite. As in the derivation of
the quadrupole correction, we can expand the integrand as a power series in s

r . This gives

Ug ≈ −
GMm

r
− GM

2r3

ˆ L

−L
λs2(3 cos2 θ − 1) ds,

or

Ug ≈ −
GMm

r
− GMmL2

6r3
(3 cos2 θ − 1).

In the rotating frame, we also have to account for the potential energy due to the centripetal
force, as explained above. This is proportional to the distance squared, so

Uc =
Ω2

2

ˆ L

−L
λ
(
r2 + s2 + 2rs cos θ

)
ds,

or

Uc =
mΩ2r2

2
+
mΩ2L2

6
.

The net torque is given by

τ = − ∂

∂θ
(Ug + Uc) = −GMmL2

r3
sin θ cos θ.

The moment of inertia of the satellite about its center of mass is 1
3mL

2, so

1

3
mL2θ̈ = −GMmL2

r3
sin θ cos θ ≈ −GMmL2

r3
θ,

which corresponds to a frequency of oscillation ω1 = Ω
√

3.

Perpendicular to the orbital plane, we have the same expression for the gravitational potential
energy. However, the potential energy due to the centripetal force is now

Uc =
Ω2

2

ˆ L

−L
λ (r + s cos θ)

2
ds,

or

Uc =
mΩ2r2

2
+
mΩ2L2

6
cos2 θ.
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The net torque is then

τ = − ∂

∂θ
(Ug + Uc) = −2

3
mL2Ω2 sin θ cos θ.

This corresponds to a frequency of oscillations ω2 = Ω
√

2.

Now the satellite is given a small angular velocity ω. We will work in the original frame, so
we do not need to worry about the torque due to the centripetal force. The rotational kinetic
energy of the satellite is given by

KR =
1

2
I3 (ω + Ω sin θ)

2
+

1

2
IΩ2 cos2 θ,

where we have decomposed the orbital angular velocity of the satellite along its principal
axes. Using I3 = 1

2ma
2 and I = 1

3mL
2, we have

KR =
1

4
ma2 (ω + Ω sin θ)

2
+

1

6
mL2Ω2 cos2 θ.

The total energy consists of this term as well as the quadrupole potential term and the kinetic
energy of the satellite’s center of mass. The latter correction is independent of θ, so setting
∂E
∂θ = 0 gives

1

2
ma2 (ω + Ω sin θ) Ω cos θ − 1

3
mL2Ω2 cos θ sin θ +mL2Ω2 cos θ sin θ = 0.

Using sin θ ≈ θ and cos θ ≈ 1, we have

|θ| ≈ 3ω

4Ω

a2

L2
,

where we have neglected higher order corrections. Clearly, the orientation of the satellite is
perpendicular to its orbit, and |θ| is small given our initial assumptions.

8.4 Kepler’s Laws

Astronomers were analyzing planetary orbits long before Newton’s time. One of these as-
tronomers was Johannes Kepler. Using empirical data gathered by Tycho Brahe, Kepler de-
termined three features of planetary orbits, known now as Kepler’s laws:

1. The orbit of a planet is a conic section, with the Sun located at one of the foci.

2. The segment connecting the sun and the planet sweeps out equal areas during equal time
intervals.

3. The square of the orbital period of a planet is proportional to the cube of the semimajor
axis of its orbit.
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Luckily, we do not have to repeat Kepler’s painstaking data analysis. Using Newton’s laws and
what we have understood about central forces, we can prove each of Kepler’s statements.

The first statement may seem simplest, but it is the most challenging to prove. We will start
by considering a planet of mass m orbiting a star of mass M under the influence of gravity.
The total energy associated with this motion (assuming the star is so massive that it stays
approximately fixed) is given by

E =
1

2
mv · v + U(r),

where U(r) = −Cr is the potential energy associated with the gravitational forceii, and v =
dr
dt r̂ + r dθdt θ̂. Performing the dot product gives

E =
1

2
m

((
dr

dt

)2

+

(
r
dθ

dt

)2
)

+ U(r).

The second term in the kinetic energy is the energy associated with the rotational component of
the planet’s motion, so we call it the azimuthal kinetic energy. Recalling that angular momentum
is conserved under the action of a central force, we know that L = mr2 dθ

dt is a constant. We can

rewrite the second term as 1
2m
(
r dθdt
)2

= L2

2mr2 . This gives

E =
1

2
m

(
dr

dt

)2

+
L2

2mr2
+ U(r)

=
1

2
m

(
dr

dt

)2

+ Ue(r),

where we have defined the effective potential

Ue(r) ≡
L2

2mr2
− C

r
.

This eliminates the explicit dependence on θ, so we can rearrange and write

√
2

m
(E − Ue(r)) =

dr

dt
.

This is a separable differential equation and can easily be reduced to an integral. However,
carrying out the integration is very difficult. In fact, most central forces do not have clean
analytic solutions for their equations of motion. While numerical integration is a viable option,
it does not give nearly as much information as an analytic result.

We can avoid evaluating the time integral by focusing on determining the shape of the orbit.
This requires us to solve for the radius as a function of the angle rather than the time. To do
this, we can use the chain rule to rewrite our differential equation:

√
2

m
(E − Ue(r)) =

dr

dt
=
dr

dθ

dθ

dt
=
dr

dθ

L

mr2
.

iiIn this section we will let C = GMm in order to simplify notation.
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After squaring both sides, we obtain

(
1

r2

dr

dθ

)2

=
2m(E − Ue(r))

L2
.

We can substitute the effective potential for gravity, Ue(r) = L2

2mr2 − C
r . The equation becomes

(
1

r2

dr

dθ

)2

=
2mE

L2
+

2mC

rL2
− 1

r2
.

We will now perform a crucial change of variables by letting u = 1
r . The right hand side is easy

to rewrite in terms of u, but dr
dθ is less obvious. For this, we need to use the chain rule:

dr

dθ
=
dr

du

du

dθ
= − 1

u2

du

dθ
.

Therefore, we obtain (
du

dθ

)2

=
2mE

L2
+

2mC

L2
u− u2.

Another change of variables is in order: we can let v = u− mC
L2 . The equation becomes

(
dv

dθ

)2

=
2mE

L2
+

2mC

L2

(
v +

mC

L2

)
−
(
v +

mC

L2

)2

=
2mE

L2
− v2 +

m2C2

L4

= −v2 +
m2C2

L4

(
1 +

2EL2

mC2

)
.

Before solving this equation, we define k = mC
L2

√
1 + 2EL

mC2 . So, we have

dv

dθ
=
√
k2 − v2.

Separating and integrating, and letting the initial angle be θ0, we have
ˆ

dv√
k2 − v2

=

ˆ

dθ,

so that
v = k cos(θ − θ0).

Substituting v = 1
r − mC

L2 , we have

r =
L2

mC

1

1 + e cos(θ − θ0)
,

where we have defined the eccentricity e to be
√

1 + 2EL2

mC2 . In Appendix D, it is shown that this

is the general polar form of a conic section, so we have proved Kepler’s first law. The shape of
the orbit is dictated by the value of e, so we will examine each possibility.
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Ueff

r

(a) e = 0

Ueff

r

(b) 0 < e < 1

Ueff

r

(c) e = 1

Ueff

r

(d) e > 1

Figure 8.7: The effective potential graph describes the different kinds of orbits.
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� e = 0: In this case we see that r is constant, which implies that the orbit is circular. Using

the expression for eccentricity, we also see that E = −mC2

2L2 . Since this is negative, the
gravitational potential energy must be larger than the planet’s kinetic energy. If we plot
the effective potential as a function of radius as in Figure 8.7, zero eccentricity corresponds
to a trajectory that remains at the bottom of the well. Thus, there is no radial kinetic
energy, and the azimuthal kinetic energy and potential energy remain constant, as we
would expect.

� 0 < e < 1: This corresponds to elliptical orbits. For the orbit to form an ellipse, we see

that the energy must satisfy −mC2

2L2 < E < 0. On the effective potential diagram, this
corresponds to energy lines in the well. Since the kinetic energy is always positive, the
effective potential energy must lie below the energy line. Thus, the planet will oscillate
between two distinct radii, which confirms that the orbit is an ellipse. The minimum and
maximum radii clearly occur at θ − θ0 = 0 and θ − θ0 = π, and are

rmin =
L2

mC(1 + e)
,

rmax =
L2

mC(1− e) .

� e = 1: This corresponds to a parabolic orbit. Physically, this implies that the total energy
of the system must be zero. This also means that the kinetic energy of the system is
zero at r =∞ since the potential energy vanishes at infinity. Thus, the object passes the

origin at a minimum distance rmin = L2

2mC , swings around, and escapes to infinity with its
velocity approaching zero.

� e > 1: This corresponds to a hyperbolic orbit. Because E > 0, the particle will have
energy left over even as it reaches infinity. The object will swing around the origin at a

distance r < L2

2mC , and its trajectory will have a straight asymptote.

Since planetary orbits are bound, their paths must be elliptical (or circular).

Example 8.7. Determine possible orbits for the central force F (r) = − β
2r3 .

Solution: The potential associated with this central force is U(r) = − β
r2 . The effective

potential is then given by

Ue(r) =
L2

2mr2
− β

r2
.

The is equivalent to the effective potential for gravity, with C = 0 and L2

2m → L2

2m − β.
Therefore, (

1

r2

dr

dθ

)2

=
2mE

L2
− L2 − 2mβ

L2

1

r2
.

Calling u = 1
r , we have (

du

dθ

)2

=
2mE

L2
−
(

1− 2mβ

L2

)
u2.
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If we call k2 = 2mE
L2−2mβ , then

ˆ

du√
k2 − u2

=

√
1− 2mβ

L2

ˆ

dθ.

The solutions fall into three possible categories. When E > 0 and L2 > 2mβ, the orbits will
behave qualitatively like a hyperbola, reaching a minimum distance from the source before
escaping to infinity. In this case, the orbit is

1

r
=

√
2mE

L2 − 2mβ
cos

(
(θ − θ0)

√
1− 2mβ

L2

)
.

You can verify that the minimum distance to the source is
√

L2−2mβ
2mE . When E > 0 and

L2 < 2mβ, the mass will start at infinity and spiral arbitrarily close to the source. This orbit
is given by

1

r
=

√
2mE

2mβ − L2
sinh

(
(θ − θ0)

√
2mβ

L2
− 1

)
.

Finally, when E < 0 and L2 < 2mβ, the mass will start a finite distance from the source
before spiraling arbitrarily close to it. This orbit is given by

1

r
=

√
2mE

L2 − 2mβ
cosh

(
(θ − θ0)

√
2mβ

L2
− 1

)
.

E > 0
L2 > 2mβ

E > 0
L2 < 2mβ

E < 0
L2 < 2mβ

Figure 8.8: The three possible orbits for a force F (r) ∝ r−3.

Kepler’s second law, the law of equal areas, is a consequence of conservation of angular momen-
tum. Figure 8.9 shows a small slice of a planetary orbit. Its area is given by a cross product of
the position vector and the displacement:

dA =
1

2
|r × dr|.

Thus, the time derivative of the area is

dA

dt
=

1

2

∣∣∣∣r ×
dr

dt

∣∣∣∣ =
L

2m
.

Because the total angular momentum of the orbiting body remains constant, the rate at which
area is swept out is constant. This proves Kepler’s second law.
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r

dr

Figure 8.9: Equal areas are swept out in equal times because L is conserved.

Example 8.8. Consider the central force attraction

ẅ = −k|w|a w|w| ,

where w is taken to be a complex number, with its magnitude representing r and its phase
representing θ. Using the transformation z = wβ and imposing Kepler’s second law, show
that this central force equation can be mapped to

z̈ = −κ|z|b z|z| ,

and find the relationship between a, b, and β.

Solution: Since both orbits conserve angular momentum, Kepler’s second law must hold, so

dA
dt
dA′
dτ

=
1
2 |w|2 dθdt

1
2 |w|2β dθ

′
dτ

= C,

where C is a constant. Because z = wβ , θ′ = βθ, and thus

|w|2−2β dτ

dt
= Cβ,

If we call Cβ = α, then dτ
dt = α|w|2β−2. Therefore,

d2z

dτ2
=

1

α2
|w|2−2β d

dt

(
|w|2−2β dw

β

dt

)
,

=
β

α2
|w|2−2β d

dt

(
w̄1−β dw

dt

)
,

=
β

α2
|w|2−2β

(
(1− β)w̄−β

∣∣∣∣
dw

dt

∣∣∣∣
2

+ w̄1−β d
2w

dt2

)
.

Factoring out 2(1− β)w̄−β , and using d2w
dt2 = −k w

|w|1−a , we have

d2z

dτ2
=

2β(1− β)

α2
w̄−β |w|2−2β

(
1

2

∣∣∣∣
dw

dt

∣∣∣∣
2

− k

2(1− β)

1

|w|−1−a

)
.
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The quantity in the parentheses is very similar to the energy, which we can write as

E =
1

2

∣∣∣∣
dw

dt

∣∣∣∣
2

+
k

1 + a

1

|w|−1−a .

These quantities are equal when a+ 1 = 2β − 2, or β = a+3
2 . If this is the case, then we can

use the conservation of energy to obtain

d2z

dτ2
= −κw̄−β |w|2−2β = −κ wβ

|w|4β−2
,

where κ is a constant expressible in terms of β and E. Because z = wβ ,

d2z

dτ2
= −κ z

|z|4− 2
β

= −κ|z| 2β−3 z

|z| .

Therefore, b = 2
β − 3, or (a+ 3)(b+ 3) = 4. This is an example of duality , the mathematical

equivalence of two physical systems up to an analytic transformation. Substituting the ex-
ponent for the gravitational potential, a = −2, we find b = 1, which corresponds to a system
obeying Hooke’s law. Therefore, we would expect to be able to analytically solve a central
force obeying Hooke’s law by transforming Kepler orbits. Indeed, you can verify that Hooke’s
law leads to closed elliptical orbits, just like Newton’s law of gravitation.

We can use Kepler’s second law to prove his third law. Because dA
dt = L

2m , A = LT
2m , where T is

the period of the orbit. Since A represents the total area traversed after one period, it is simply
equal to the area of the ellipse, πab. We can conveniently write b in terms of a as b = a

√
1− e2

(see Appendix D), so that we have

LT

2m
= πa2

√
1− e2.

Rearranging slightly, we obtain

π2a4 =
T 2

4m

L2

m(1− e2)
.

We can simplify this further, by relating the semimajor axis and the angular momentum. Since
the semimajor axis is simply the average of the minimum and maximum radii given earlier,

a =
1

2
(rmin + rmax) =

L2

mC(1− e2)
.

Therefore, our equation becomes

π2a4 =
T 2

4m
aC,

or

T 2 =
4π2ma3

C
.
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This shows that T 2 ∝ a3, which is Kepler’s third law. It is interesting that we have a formula
for the period which is independent of the semiminor axis length. This is reasonable because the

semimajor axis, the semiminor axis, and the eccentricity are related by 1 +
(
b
a

)2
= e2, and the

eccentricity is determined by physical parameters such as the angular momentum and energy.
Thus, we only need a single length parameter to describe the orbit and its period. Note also
that for gravity C = GMm, the proportionality constant does not depend on the mass of the
orbiting body. This allowed Kepler to observe the relationship in the planets of the solar system,
which have widely varying values of m.

We can use this result to derive an important relationship between the energy and the length
of the semimajor axis. If we take the equation LT

2m = πa2
√

1− e2 and substitute our expression
for the eccentricity, we obtain

π2a4 = −T
2C2

8Em
.

Substituting for T 2 with Kepler’s third law, we obtain

π2a4 = −
(

C2

8Em

)
4π2ma3

C
,

or

E = − C
2a

= −GMm

2a
.

Note that these results agree with Example 8.1, since the semimajor axis of a circle is its radius.
If we think of this in another way, we have a surprising result: when computing the energy and
the period, we can ignore the shape of an orbit, and simply treat an ellipse as a circle with
radius a.

Example 8.9. A rope orbits Earth and is aligned in the radial direction. The distance from
the center of Earth and the nearest end of the rope is R and the length of the rope is L.
Where is the rope most likely to break?

Solution: Let the angular velocity of the rope be Ω. If we consider a small portion of the
rope, Newton’s second law gives us

T (r)− T (r + dr) +
GM

(R+ r)2
λ dr = Ω2(R+ r)λ dr,

where λ is the linear density of the rope, and M is the mass of Earth. This gives the
differential equation

dT

dr
=

GM

(R+ r)2
λ− Ω2(R+ r)λ.

At r = 0, the tension in the rope is zero because the front end of the rope is free. Thus,

T (r) = GMλ

(
1

R
− 1

R+ r

)
− Ω2λ

2

(
(R+ r)2 −R2

)
.

By the same logic, the tension must be zero at r = L. This allows us to solve for Ω,

Ω2 =
2GM

R(R+ L)(2R+ L)
.

8.4 Kepler’s Laws 201

The point at which the rope is most likely to break is the point of greatest tension. Setting
dT
dr = 0 gives

(R+ r)3 =
GM

Ω2
=
R(R+ L)(2R+ L)

2
.

Therefore,

r = R

(
3

√
(1 + η)

(
1 +

η

2

)
− 1

)
,

where η = L
R .

Example 8.10. An object moves in a circular orbit which passes through the center of the
force C, as shown in Figure 8.10. Give an expression for the central force acting. Assume
that the particle’s mass is m, the radius of its orbit is R, and its angular momentum is L.

C

F (r)

Figure 8.10: A body moves in a circular orbit due to a central force from an object at
C.

Solution: The angular momentum about C is conserved. Using the geometry shown in
Figure 8.11, we can determine the angular momentum at a given point to be

L = mvr sin
θ

2
.

C

r

v

θ

θ
2

C

2R

r

θ

θ
2

Figure 8.11: The angle between r and v is θ
2

(left), and csc θ
2

= 2R
r

(right).
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Moreover, energy is conserved:

E =
1

2
mv2 + U(r) =

L2

2mr2
csc2 θ

2
+ U(r).

Figure 8.11 shows that csc θ2 = 2R
r , so we have

E =
2L2R2

mr4
+ U(r).

We can find the force by taking the derivative with respect to r on both sides, noting that E
is constant:

F (r) = −∂U
∂r

=
∂

∂r

(
2L2R2

mr4

)
= −8L2R2

mr5
.

Thus, this strange orbit results from a force proportional to 1
r5 .

Example 8.11. Two point masses m are separated by a distance ` and have initial veloc-
ities as indicated in Figure 8.12. The masses interact only through universal gravitation.
Determine the condition for the masses to collide, and the time it takes for them to do so.

m m

v0

v0

`

Figure 8.12: Two point masses with a separation ` and opposite velocities v0 collide
after some time t.

Solution: In order for two point masses to collide, the distance between them must become
zero. For typical effective potential curves, like the ones in Figure 8.7, this is impossible:
the effective potential is infinite at r = 0. This is because, when r is small, the azimuthal
kinetic energy term (which depends on r−2) dominates over the potential energy term (which
depends on r−1). The only situation in which this does not occur is when the angular mo-

mentum is zero, so that the azimuthal kinetic energy L2

2mr2 vanishes. In this case, the effective
potential becomes −∞ at zero, and so there is no energy barrier preventing a collision. This
immediately gives the condition vθ = v0 = 0, or that the masses will not rotate.

To determine the time it takes for the two bodies to collide, we can use the conservation of
energy. By the conservation of momentum, the two bodies always have equal and opposite
velocities. So,

−Gm
2

`
= −Gm

2

`′
+ 2

(
1

2
mv2

)

or

Gm

(
1

`′
− 1

`

)
= v2.
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The rate at which the distance between the objects decreases is 2v. Thus, v = − 1
2
d`′

dt , and
we have the differential equation

−2

√
Gm

(
1

`′
− 1

`

)
=
d`′

dt
.

Separating and integrating, the time is

t = −
ˆ 0

`

d`′

2
√
Gm

(
1
`′ − 1

`

) .

This can be evaluated using special functions. The result is

t =
π

4

`3/2√
Gm

.

The collision time is proportional to `3/2, which is reminiscent of Kepler’s third law.

8.5 Central Force Scattering

Kepler was concerned with planetary orbits, which are bounded. However, in proving his laws,
we have also determined the form of unbounded orbits. When a mass approaches a gravitational
source and E > 0, it will be deflected rather than trapped. The angle φ by which it is deflected
is called the scattering angle.

φ

b

a

Figure 8.13: An inverse square central force scatters incoming particles along hyperbolic
paths.

We will determine the scattering angle by examining a hyperbolic orbit. Figure 8.13 shows the
hyperbolic orbit of a mass around a body at the origin. The scattering angle is shown as the
angle between the initial and final velocity vectors. It is easy to see geometrically that its value
is

φ = π − 2 tan−1

(
b

a

)
.

We can write this in terms of the physical parameters of the system. From the polar form of a
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B

Figure 8.14: The impact parameter B is the distance of the straight line path from the
force center.

hyperbola, we know that as r approaches infinity, cos θ approaches − 1
e . Since b

a represents the
slope of the asymptote, we have

b

a
= tan θ∞ =

√
1

cos2 θ∞
− 1 =

√
e2 − 1.

Recalling our expression for the eccentricity, this becomes

b

a
=

√
2EL2

mC2
=
v0L

C
.

We can simplify this further by determining the value of the angular momentum. When the
particle is far from the scatterer, it moves in an approximately straight line, so its angular
momentum is

L = mv0B,

where B is the distance of closest approach if the particle were to continue in a straight line.
This distance is called the impact parameter , and is shown in Figure 8.14. We can determine
the value of the impact parameter through a geometric argument. If we rotate the right triangle
with legs a and b in Figure 8.13 counter-clockwise by π−φ

2 , the side of length a is coincident

with the dashed line. Since
√
a2 + b2 = c, the vertex of the triangle is rotated to the origin.

Therefore, the remaining leg of the triangle is B = b. The scattering angle is thus

φ = π − 2 tan−1

(
v0(mv0b)

GMm

)
= π − 2 tan−1

(
v2

0b

GM

)
.

Note that this is independent of the mass of the scattered particle, as we would expect. Addi-
tionally, you can verify that the expression gives sensible results for extreme cases. For example,
when b or v0 is very large, the scattering angle is reduced almost to zero.

In practice, we usually cannot exactly control the impact parameter. Instead, we generally have
to deal with a beam of particles with a large range of impact parameters. In this situation, it
is often more useful to use the differential cross section of the scattering. This is defined to
be the ratio of the initial cross-sectional area of a beam and the solid angle it subtends after
scatteringiii, as shown in Figure 8.15.

iiiThe solid angle of an area A on a sphere of radius R is A
R2 , and is measured in steradians, a two-dimensional

analogue of radians. So, for example, the solid angle of a sphere is 4π.
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φ+ dφ

φ

b

R

Figure 8.15: The ratio of the area of the ring to the solid angle subtended on the sphere
gives the differential cross section.

Consider a ring of particles with impact parameter between b and b+ db. The ring has a cross-
sectional area of dσ = 2πb|db|. To compute its differential cross section, we need to find the
solid angle subtended by the scattered beam. We know that

φ = π − 2 tan−1

(
v2

0b

GM

)
,

so

b =
GM

v2
0

cot
φ

2
.

Therefore, ∣∣∣∣
db

dφ

∣∣∣∣ =
GM

2v2
0 sin2 φ

2

.

We now have enough information to determine the solid angle. On a large sphere centered at
the scattering mass, the beam becomes a ring of radius R sinφ and thickness R|dφ|. So, the
solid angle is

dΩ =
2π(R sinφ)(R|dφ|)

R2
= 2π sinφ|dφ|.

So, the differential cross section is

dσ

dΩ
=

2πb|db|
2π sinφ|dφ| =

b

sinφ

∣∣∣∣
db

dφ

∣∣∣∣ =
GMb

2v2
0 sinφ sin2 φ

2

.

By substituting for b, we obtain finally

dσ

dΩ
=

G2M2

4v4
0 sin4 φ

2

.

You can verify that this also gives a correct qualitative description of scattering. When φ ≈ π,
the cross section is minimized, which implies that only a narrow range of impact parameters
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lead to beams which scatter directly backwards. On the contrary, when φ ≈ 0, the cross section
grows without bound. This is because any beam far enough from the scattering mass will barely
scatter at all, leading to a diverging value of the derivative.

In addition to the differential result, it is also sometimes useful to find total cross section over
which a particle is likely to get scattered. This is accomplished by integrating the differential
cross section over the solid angle,

σt =

ˆ

dσ

dΩ
dΩ =

ˆ

G2M2

4v4
0 sin4 φ

2

dΩ.

Because dΩ = 2π sinφ|dφ|, the integral is

σt =

ˆ Φmax

0

2πG2M2 sinφ

4v4
0 sin4 φ

2

dφ,

where Φmax is the maximum possible scattering angle. In the case of an inverse square potential,
with Φmax = π, this integral diverges. Thus, a particle will get scattered at any value of the
impact parameter or energy. For this reason, we call gravity a long-range force.

Example 8.12. Scattering is a common phenomenon in nuclear physics, since most forces
between particles are central. A common approximation for a nuclear scattering force is the
spherical well potential, defined by

V (r) =

{
0 r > a

−V0 r ≤ a .

Determine the differential cross section for the scattering of an object under this potential,
assuming that the total energy of the object is E0.

a

b b′
φ

θ
2 b

Figure 8.16: A particle scatters through a spherical well potential.

Solution: The trajectory is shown in Figure 8.16. Since the potential is 0 outside a sphere
of radius a, the object travels in a straight line. Inside the sphere, the object also travels
in a straight line, but with a different slope. Once it emerges out of the sphere, the object
will be deflected once more and then continue along a different straight line. In order to
determine the deflection of the object inside the sphere, we utilize the conservation of energy
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and angular momentum. Conservation of energy implies that the velocity inside the sphere
is

v =

√
2

m
(E0 + V0).

Conservation of angular momentum about the origin of the sphere tells us that

mb

√
2E0

m
= mb′

√
2

m
(E0 + V0),

where b is the initial impact parameter, and b′ is the impact parameter inside the sphere.
Therefore,

b′ =

√
E0

E0 + V0
b ≡ ηb.

We label the scattering angle φ as shown, and define θ ≡ π − φ. If we extend the first and
third rays, as shown in the diagram, we have an isosceles triangle with a vertex angle of θ.
We define b to be the altitude of this triangle. From the geometry shown in Figure 8.16 we
have

(b′ + b) sin
θ

2
= b,

or

b = b

(
csc

θ

2
− η
)
.

The longest side of the isosceles triangle is 2
√
a2 − b′2. Therefore,

tan
θ

2
=

√
a2 − b′2
b

=

√
a2 − η2b2

b
(
csc θ

2 − η
) .

We can now solve for b in terms of θ, giving

b =
a sin φ

2√
η2 − 2η cos φ2 + 1

,

where we have substituted φ = π − θ. The differential cross section can then be obtained
from the formula

dσ

dΩ
=

b

sinφ

∣∣∣∣
db

dφ

∣∣∣∣ =
a2

4 cos φ2

(
cos φ2 − η

)(
1− η cos φ2

)

(
η2 − 2η cos φ2 + 1

)2 .

Example 8.13. For an inverse square force, the differential cross section only diverges when
φ = 0, which corresponds to particles with high impact parameter that are not deflected.
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However, for other force laws, the differential cross section can diverge for non-zero angles.
This indicates the presence of a “rainbow,” where a large cross-sectional area of incoming
particles is scattered to a narrow arc on a distant sphere. Determine the angle of the rainbow
for a force given by the Lennard-Jones potential,

V (r) = 4ε

(
σ12

r12
− σ6

r6

)
.

Solution: In Problem 14, you will show that the scattering angle for a force F = k
rn is

φ ≈ k

mv2
0b
n−1

ˆ

π
2

−π2
cosn−1 θ dθ.

Using the Lennard-Jones force

F (r) · r̂ = −dV (r)

dr
= −24εσ6

r7
+

48εσ12

r13

and the value for the integral given in Problem 14, we have a scattering angle

φ ≈ πε

mv2
0

(
693σ12

64b12
− 15σ6

2b6

)
.

The differential cross section is proportional to db
dφ , so it will diverge whenever dφ

db = 0. You
can verify that this occurs when

b = σ
6

√
231

80
.

Evaluating φ for this value of b, we should have a rainbow angle of

φr = −50π

77

ε

E
,

where E = 1
2mv

2
0 . Remember that our approximation is only valid when the scattering angle

is small, so we must have E � ε in order for this result to hold. The agreement of this result
with numerical simulations is shown in Figure 8.17.

1 2 3 4
log(E/ε)

log φr

Figure 8.17: The simulation data (shown as points) agree with the approximate result
when E � ε.
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Example 8.14. Determine the differential cross section for the scattering of an object under
the potential U(r) = β

r2 .

Solution: We previously deduced the form of unbound orbits under the potential U(r) =
− β
r2 . Setting β → −β, the orbits under the potential U(r) = β

r2 will take the form

1

r
=

√
2mE

L2 + 2mβ
cos

(
θ

√
1 +

2mβ

L2

)
,

where we set θ0 = 0. Clearly, the asymptotes of the orbit will occur when

cos

(
θ
√

1 + 2mβ
L2

)
= 0. Therefore, the scattering angle is

φ = π − π√
1 + 2mβ

L2

.

Using L = mv0b, we can solve for b(φ),

b =

√
2β

mv2
0

π − φ√
φ(2π − φ)

.

Therefore,
dσ

dΩ
=

b

sinφ

∣∣∣∣
db

dφ

∣∣∣∣ =
π2β

E sinφ

(
π − φ

φ2(2π − φ)2

)
,

where E = 1
2mv

2
0 .

8.6 Systems of Many Bodies

So far, while studying central forces between two bodies, we have made the assumption that the
mass of one body is much larger than the mass of the other. Even though Newton’s third law
requires that both bodies experience the same force, the force exerted by the smaller body on
the massive body is not strong enough to significantly perturb the massive body. Therefore, we
were able to assume the massive body remained fixed and solve for the motion of the smaller
body. However, if the masses are comparable, we will need to account for motion of both bodies.
This problem can be significantly simplified by a change of coordinates.

Figure 8.18 shows the change of coordinates. We assign vectors r1 and r2 to the positions of
two masses under the influence of a central force. We also define two new vectors: the position
of the center of mass R, and the relative position of the two masses r. We express these vectors
in terms of the masses of the individual position vectors of the objects:

R =
m1r1 +m2r2

m1 +m2
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m1

m2

r1

r2
R

r = r2 − r1

Figure 8.18: Two orbiting masses with an alternative set of position coordinates.

and

r = r2 − r1.

We can solve these equations for r1 and r2, giving

r1 = R−
(

m2

m1 +m2

)
r,

r2 = R+

(
m1

m1 +m2

)
r.

We will write the energy in terms of the new vectors. We know that

E =
1

2
m1ṙ1

2 +
1

2
m2ṙ2

2 + U(|r1 − r2|),

so we can substitute for r1 and r2 and obtain

E =
1

2
m1

(
Ṙ−

(
m2

m1 +m2

)
ṙ

)2

+
1

2
m2

(
Ṙ+

(
m1

m1 +m2

)
ṙ

)2

+ U(r).

Simplifying, this becomes

E =
1

2
(m1 +m2)Ṙ2 +

1

2

m1m2

m1 +m2
ṙ2 + U(|r|).

The term m1m2

m1+m2
is called the reduced mass of the system, and is denoted µ. Note that it

satisfies
1

µ
=

1

m1
+

1

m2
.

Our final result for the total energy is

E =
1

2
(m1 +m2)Ṙ2 +

1

2
µṙ2 + U(r).
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Since the system is not subject to any external force, the center of mass velocity Ṙ is constant.
Thus, the first term is constant and we can ignore it. This reduces the energy to a function of
r alone, which we can treat as the energy of a one body system. This is the advantage of the
change of coordinates we utilized.

In fact, we have done even more than reduce to a one-body problem: we have reduced to a
problem which we have already solved. The energy is now equal to the energy of a planet of
mass µ a distance r from the source of gravitation. Therefore, our solution to the Kepler problem
is directly applicable to the two body problem. We need only perform the necessary changes of
coordinates.

Example 8.15. A body with mass αM is stationary when an object with mass βM is
launched with an initial velocity v0 perpendicular to the line connecting the two masses.
The distance between the masses is initially D. Determine the motion of both bodies and a
constraint guaranteeing that their resulting orbit is unbound.

Solution: The total energy of the two body system is given by

E =
1

2
(m1 +m2)Ṙ2 +

1

2
µṙ2 + U(r).

The center of mass velocity is given by β
α+β v0 and the reduced mass is αβ

α+βM , so we can
rewrite this as

E =
M

2

β2

α+ β
v2

0 +
M

2

αβ

α+ β

(
dr

dt

)2

+ Ue(r),

where Ue(r) = L2

2µr2 − C
r = L2(α+β)

2Mαβr2 − GαβM2

r . If we let E′ = E − M
2

β2

α+β v
2
0 , we see that we

have an equation for a planetary orbit. The solution is

r =
L2(α+ β)

Gα2β2M3

1

1 +
√

1 + 2E′L2(α+β)
G2α3β3M5 cos θ

=
L2(α+ β)

Gα2β2M3

1

1 + e′ cos θ
.

Now, we can rewrite our result in terms of D and v0. We know that

L =
αβ

α+ β
Mv0D

and

E′ =
M

2
βv2

0 −
M

2

β2

α+ β
v2

0 −
αβM2G

D
=
M

2

αβ

α+ β
v2

0 −
αβM2G

D
.

Thus, the solution can be written as

r =
v2

0D
2

GM(α+ β)

1

1 + e′ cos (θ − θ0)
.
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We solve for the phase shift θ0 via the initial condition r(θ = 0) = D, which gives us

cos θ0 =
1

e′

(
v2

0D

GM(α+ β)
− 1

)
.

The full equation of motion of the two masses can now be found by computing the location
of the center of mass and adding the relative center of mass vector.

We still need to find a constraint such that the motion is unbound. This is possible if r
diverges, which occurs when E′ ≥ 0. This implies that

M

2

αβ

α+ β
v2

0 −
αβM2G

D
≥ 0,

or

v2
0 ≥

2MG(α+ β)

D
.

Figure 8.19 shows examples of possible orbits, corresponding to different values of E′.

2M

M

M

2M

Figure 8.19: In the elliptical case (above), the two masses stay within some maximum
distance of each other. In the hyperbolic case (below), the distance is unbound.

As you can see, even though a two-body problem is more difficult than a one-body problem,
it is still solvable. However, carrying out this process for three or more bodies is generally not
analytically tractable.

8.7 Binary Systems

In Chapter 4, we showed how an energy diagram can be used to gain a qualitative understanding
of motion even when the equations of motion are not analytically tractable. This is one way of
treating the three-body problem if the third mass is small enough that we can assume it does
not affect the potential generated by the larger masses. In this section we will use this method
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xy

Figure 8.20: The potential energy per unit mass due to two massive bodies.

to understand the behavior of mass in a binary system. We will then look more closely at the
influence of two gravitational bodies on each other.

Roche Lobes

Consider a binary system of two masses M1 and M2 separated by a distance r. We assume the
system is bound, so

1

2

(
M1v

2
1 +M2v

2
2

)
− GM1M2

r
< 0.

Then, as we showed in the previous section, the two bodies will orbit their center of mass. We
will henceforth ignore this rotation, and consider only the static potential created by the two
bodies. This amounts to working in a reference frame rotating with the bodies; you will complete
such an analysis in detail in Problem 16, and the details of the dynamics will be developed in
Chapter 12. For now, we simply recall from Example 8.6 that in the rotating frame, there is an
outward centrifugal force with a potential per unit mass Uc = − 1

2ω
2r2. From our analysis of

the two body problem, the angular velocity ω is given by

ω2 =
Gµ

(x1 − x2)3
,

where µ is the reduced mass.

The potential energy of the two bodies per unit test mass is the simple sum of their Newtonian
potentials. We will place the origin at the center of mass and the bodies on the x axis, at
positions x1 and x2 (where M1x1 +M2x2 = 0). Then the potential is given explicitly by

U(r) = − GM1√
(x− x1)2 + y2 + z2

− GM2√
(x− x2)2 + y2 + z2

− 1

2
ω2r2.

This depends only on x and y2 + z2, so we will set z = 0 without loss of generality and work in
the xy plane. A plot of the potential is shown in Figure 8.20.
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x

y

Figure 8.21: The equipotential lines of a binary system, including the teardrop shaped
curves passing through the Lagrange point L1.

This potential has several stationary points, known as Lagrange points. You will find the loca-
tions of all of the Lagrange points in Problem 16. For now, we will be focused on the Lagrange
point L1. This is the point on the line between the two masses where the gravitational forces
balance the centrifugal force. Let x1 > 0; then, the position x of the Lagrange point satisfies

GM1

(x− x1)2
− GM2

(x− x2)2
+ ω2x = 0.

Substituting for ω, we have

M1

(x− x1)2
− M2

(x− x2)2
+

M1M2x

(M1 +M2)(x1 − x2)3
= 0.

Solving for x involves finding the zeroes of a quintic polynomial. We can see from the energy
diagram that there will be three real solutions, with the middle solution corresponding to L1.

From Figure 8.20, we see that there are roughly circular regions around each mass such that
U(r) = UL1. Figure 8.21 shows these regions, along with other equipotential lines. They are
known as the Roche lobes; an orbiting mass is gravitationally bound to an object in a binary
system if it lies within the Roche lobe of the object.

The contour through the first Lagrange point is the critical transition between contours of lower
energy, which are orbits bound to one mass, and contours of higher energy, which are orbits
around the binary system as a whole. Note especially the contours of intermediate values of
energy, which form horseshoe-like shapes. There is an asteroid known as Cruithne which follows
this type of orbit in the Earth-Sun system; even though it is principally affected by the gravity
of the Sun, it is sometimes referred to as Earth’s second moon.

To make analytical progress, we will have to introduce an assumption which simplifies the quintic
equation for the position of L1. In Problem 16, you will assume M2 � M1. Here, we will look
instead at the case where M1 = M2 ≡M , and thus |x1| = |x2| ≡ R. In this case, L1 clearly lies
at the center of mass, as we can see by substituting x = 0 into the equation above. Moreover,
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the orbital frequency of the binary system is ω2 = GM
16R3 . The potential of the Roche lobes is

then

U(0) = −2GM

R
,

so the boundary of the lobes is at

R

2
√

(x−R)2 + y2
+

R

2
√

(x+R)2 + y2
+

r2

64R2
= 1.

In polar coordinates, with u = r/R, this is

(
1− 2u cos θ + u2

)−1/2
+
(
1 + 2u cos θ + u2

)−1/2
+
u2

32
= 2.

We can determine some features of the Roche lobe from this equation. For example, consider
the limit u→ 0. Using a binomial expansion to second order in u, we find

2− 31

32
u2 + 3u2 cos2 θ = 2.

This determines the opening angle of the teardrop shape to be

φ = 2θ = 2 cos−1

√
31/6

4
.

Additionally, by setting θ = 0 and solving for u, we find that the horizontal length of a Roche
lobe is

L ≈ 1.65R.

Since the outer layers of stars are fluid, the surface of a star will take the shape of an equipo-
tential. Therefore, if a star is in a binary with another star of the same mass, it can expand
until it takes the shape of the Roche lobe. If the outer layers expand beyond the Roche lobe,
the mass will fall through the point L1 into the Roche lobe of the other star. Of course, this
does not account for the fact that the change in shape of the star will change the gravitational
potential, which in turn changes the equipotential curves. Thus, we have completed only a first
approximation; performing the calculation self-consistently would be far more complicated.

Tidal Forces

So far, we have mostly analyzed the behavior of point masses under gravitational forces. How-
ever, just like the objects causing strong gravitational forces, objects under the influence of
gravitational forces are often large. This means that they will experience different forces at
different points, which results in internal stress.

The forces resulting from the differential action of gravity at different points of a body are called
tidal forces. The name refers to the most commonly observed effect, tides on Earth. The gravity
of the moon has a different strength depending on the location on Earth, and the oceans change
shape in response to this force.
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r

θ

χ

z

x

Figure 8.22: To compute the adjustment of Earth’s gravitational field due to the moon,
we use spherical coordinates centered on Earth and directed towards the moon.

To quantify this effect, let the masses of the moon and Earth be ML and ME respectively, let
the distance from the center of Earth to the center of the moon be R, and let the radius of the
Earth be rE . We will work in a reference frame rotating about the center of mass of the system
at the orbital frequency, so both Earth and the moon are stationary. The orbital frequency is

ω =

√
G(ME +ML)

R3
,

so there is a centrifugal potential per unit mass

Uc = −1

2
ω2s2,

where s is measured from the axis of rotation. In addition we must add the gravitational
potentials of Earth and the moon. We will use spherical coordinates centered on Earth, as
shown in Figure 8.22. Then the total gravitational potential is given by

Ug = −GME

r
− GML√

R2 + r2 − 2Rr cos θ
.

To transform the centrifugal potential into these coordinates, let x be the distance of the center
of mass from the center of Earth. Then we have

s2 = (x− r cos θ)2 + (r sin θ sinφ)2 = x2 − 2xr cos θ + r2(1− sin2 θ cos2 φ).

We will define cosχ = sin θ cosφ; geometrically, χ is the angle between r and the axis of Earth
parallel to the rotation axis. In total, the potential per unit mass is

U(r) = − GME

r
− GML√

R2 + r2 − 2Rr cos θ

− G(ME +ML)

2R3

(
x2 − 2xr cos θ + r2 sin2 χ

)
.
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We will now approximate the lunar potential using the method of Section 8.3. Keeping up to
quadrupole terms, we have

− GML√
R2 + r2 − 2Rr cos θ

≈ −GML

R

(
1 +

r

R
cos θ +

r2

2R2

(
3 cos2 θ − 1

))
.

Therefore,

U(r) = − GME

r
− GML

R
− G(ME +ML)

2R3
(x2 + r2 sin2 χ)

− Gr

R2

(
ML −

(ME +ML)x

R

)
cos θ − GMLr

2

2R3

(
3 cos2 θ − 1

)
.

Since x is the position of the center of mass, we have x = ML

ME+ML
R. Upon substituting this,

the cos θ term vanishes. Letting U0 denote the constant terms, we are left with

U(r) = U0 −
GME

r
− G(ME +ML)

2R3
(r sinχ)2 − GMLr

2

2R3

(
3 cos2 θ − 1

)
.

We recognize the third term as the centrifugal potential corresponding to the spin of Earth in
the rotating frame. The fourth term is the correction due to tidal forces.

To determine the adjustment to the equipotential surface, we have to determine the value of
U at the surface. We can do this by enforcing that the volume of Earth remains constant –
therefore, if the equator bulges outwards, the poles must compress inward. This implies

ˆ 2π

0

ˆ π

0

ˆ rE(1+q)

0

r2 sin θ dr dθ dφ =
4

3
πr3
E ,

where q = r
rE
− 1. If we expand the potential to first order in q, we have

U(r) = U0 −
GME

rE
(1− q)− G(ME +ML)r2

E

2R3

(
sin2 χ+ α(3 cos2 θ − 1)

)
(1 + 2q),

where α = ML

ME+ML
. Solving for q, we obtain

q =
Ũ +

G(ME+ML)r2
E

2R3

(
sin2 χ+ α(3 cos2 θ − 1)

)

GME

rE
− G(ME+ML)r2

E

R3

(
sin2 χ+ α(3 cos2 θ − 1)

) ,

where Ũ is an unknown constant that specifies the potential at Earth’s surface. Since Earth’s
radius is much smaller than the Earth-moon distance, the second term in the denominator can
be neglected, and we have

q =
rE

GME

(
Ũ +

G(ME +ML)r2
E

2R3

(
sin2 χ+ α(3 cos2 θ − 1)

))
.

If we simplify the integral to calculate the total volume, we have

r2
E

3

ˆ 2π

0

ˆ π

0

(1 + q)3 sin θ dr dθ dφ =
4

3
πr3
E .
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Figure 8.23: The moon’s gravitational pull produces tidal bulges and polar depressions in
the Earth’s ocean, shown greatly exaggerated here.

Using (1 + q)3 ≈ 1 + 3q, we see that

ˆ 2π

0

ˆ π

0

q(θ, φ) sin θ dr dθ dφ = 0.

Integrating with the explicit form for q, we obtain

4π

(
Ũ +

2

3

G(ME +ML)r2
E

2R3

)
= 0.

This allows us to determine the unknown constant, and therefore the general form for the
equipotential surface,

q =
(ME +ML)r3

E

2MER3

(
sin2 χ+ α(3 cos2 θ − 1)− 2

3

)
.

The resulting deformation of Earth is shown in Figure 8.23. The bulge closest to the moon is
simple to explain: it results from the pull of the moon’s gravity on the water. The other bulge
is a result of the relative weakness of the moon’s gravity on the far side of Earth. Since tidal
forces result from differences in gravity, the strength of the tidal force of an object of mass M
at distance R on an object of mass m and size r scales as

|Ft| ≈ r|∇Fg| =
2GMmr

R3
.

From this, we can compare the tidal forces of the sun to those of the moon. The solar mass
is approximately 3× 107 times the lunar mass, but the moon is about 400 times closer than
the sun. Therefore, the tidal forces of the sun are about half the strength of those of the moon
on Earth. When the sun and moon align, the combined tidal force leads to stronger tides,
called spring tides. When the sun and moon are on opposite sides of Earth, their tidal forces
counteract, resulting in weaker tides, called neap tides.

Stability of Satellites

Although the tidal forces exerted by the moon on Earth are the most easily visible, Earth also
exerts significant tidal forces on the moon. We can see from the above formula that if the moon
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were to orbit closer to Earth, it would experience even stronger tidal forces. However, its own
gravity would not change. Therefore, there must be a distance at which the tidal forces of Earth
become strong enough to pull the moon apart.

We can roughly compute the radius at which this occurs with a simple calculation. Consider a
mass ∆m on the surface of the moon. It is bound to the moon by the Newtonian force of gravity,
and it is pulled away by the tidal force we derived above. Therefore, the minimum radius at
which it can orbit is given by

GML∆m

r2
L

=
2GME∆mrL

R3
.

Solving for R, we have

R =

(
2MEr

3
L

ML

)1/3

=
3
√

2rE

(
ρE
ρM

)1/3

.

This distance is called the Roche limit , and it exists for any system of orbiting bodies. When a
satellite held together by gravity crosses within the Roche limit, it becomes unstable and falls
apart. Planetary rings are often formed in this way.

Example 8.16. A planet of mass m and radius r orbits a star of mass M in a circle of radius
R. The planet is a sphere with a density proportional to 1+ ε zr , where z is the distance along
the planet’s symmetry axis as measured from its center of mass, so one side of the planet
is more massive than the other. Assume that the planet has zero angular velocity at t = 0.
Show that the planet becomes “tidally locked”, with the more massive side always facing the
star. Then find the Roche limit for a tidally locked planet.

M

m
z

R

α

s
θ

Figure 8.24: A planet with a non-uniform density becomes tidally locked with a star.

Solution: The gravitational potential of the planet due to its own field will be the same for
any orientation of the planet, so we will ignore it. We will use spherical coordinates shown in
Figure 8.24, where θ measures the polar angle from the star-planet axis, and α is the polar
angle of the axis of symmetry of the density profile. The potential energy of the planet is
then given by

U(α) = −
˚

GM√
R2 + s2 − 2Rs cos θ

ρ0

(
1 + ε

s cos ζ

R

)
dV,
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where ζ measures the angle to the symmetry axis of the planet. Letting φ be the azimuthal
angle of the spherical system, it is simple to show that

cos ζ = sin θ cosφ sinα+ cos θ cosα.

Expanding the potential up to terms of order s2

R2 , we find

U(α) = −GMρ0

R

˚

(
1 +

s

R
(cos θ + ε cos ζ) +

s2

2R2
(3 cos2 θ − 1) +

s2

R2
ε cos θ cos ζ

)
dV.

After integration, the constant term gives the volume which adds only a constant to the
potential, and the second term vanishes. The quadrupole term similarly gives a constant
factor, so the interesting term is the last one. Ignoring the constant GMm

R term, we have

U(α) = −εGMρ0r
5

5R3

ˆ 2π

0

ˆ π

0

sin θ cos θ(sin θ cosφ sinα+ cos θ cosα) dθ dφ.

The first term vanishes after integration over φ. The second term is nonzero, and gives

U(α) = −εGMmr2

5R3
cosα.

As we would expect, the potential is minimized when α = 0 and the massive side of the
planet is facing the star. The torque on the planet is

τ(α) = −dU
dα

= −εGMmr2

5R3
sinα.

The planet orbits the star with an angular velocity

Ω =

√
G(M +m)

R3
.

Let the spin angular velocity of the planet be ω(t). Then the relative orientation of the planet
changes according to

α̇ = Ω− ω(t).

We can also determine α̈ using the torque. You can verify that the planet has the same
moment of inertia as a uniform sphere of the same mass, so

α̈ =
τ(α)
2
5mr

2
= −εGM

2R3
sinα.

Differentiating the first equation and comparing with the second, we find

ω̇(t) = ε
GM

2R3
sinα.

Combining this with the equation for α̇, we have a coupled system of first-order differential
equations. It is clear that equilibrium is reached when ω = Ω and α = 0 or α = π, and α = 0
is the stable equilibrium.
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To find the Roche limit for the tidally locked planet, we account for the centrifugal force as
well as the tidal force. A mass ∆m on the planet is bound by the gravity of the planet, and
pulled away by the tidal force as well as the centrifugal force. This gives

Gm∆m

r2
=

2GM∆mr

R3
+
ω2r∆m

2
.

Using ω2 = Ω2 = 2G(M+m)
R3 , this is

m

r2
=

(3M +m)r

R3
.

The Roche limit is thus

R =

(
(3M +m)r3

m

)1/3

≈ 3
√

3rS

(
ρS
ρP

)1/3

,

where rS and ρS are the radius and density of the star and ρP is the average density of the
planet.

Key Concepts

� Central forces conserve energy and angular momentum.

� Newton’s shell theorem gives the gravitational field of large spherical bodies.

� Kepler’s three laws state properties of orbits under gravitational forces.

� Scattering by a central force can be described in terms of a differential cross section.

� Two body central force problems can be solved using center of mass coordinates.

� Tidal forces due to the moon leads to the bulging of Earth’s surface.

8.8 Problems

1. A particle is confined to move along the surface of a hemispherical cavity. Using the
conservation of angular momentum, show that the particle behaves as if it is in the effective
potential

Ue(θ) =
L2

2m`2 sin2 θ
−mg` cos θ,

where m is the mass of the particle, L is its angular momentum, ` is the radius of the
cavity, and θ refers to the spherical coordinate. Determine the equilibrium position of the
mass, as well as the frequency of small oscillations about this equilibrium. Indicate using
a diagram how the mass evolves in time given some initial conditions.

2. The orbit of a mass is given by r = a(1 + cos θ).


